
EECS 468
Project Review

Study of Loop Perforation on GPUs
Alex Broad

Akhil Guliani

Aims and Objectives

• We propose to find the best method to apply loop perforation on a
GPU like device with minimal loss in computational accuracy with
reduction in both time taken to compute the results and reduction of
power consumption.

What is loop perforation ?

• Loop perforation transforms loops to execute a subset of their
iterations.

• The goal is to reduce the amount of computational work
• amount of time

• resources such as power

Ways of doing loop Perforation

• Criticality Testing :
• Finding which methods produce unacceptable results

• Throwing out a warp == not good

• Perforation Space Exploration
• Finding all the various possible results

• Throwing out threads selectively
• Increment only one dimensions

• Increment both dimensions

• Skip certain loops based on divisibility by factor

Benefits of Approximate computing

• Approximate computing is a new research direction that improves
efficiency by carefully relaxing correctness constraints

• Quicker results

• Lower utilization of Resources

Our Case

We Study effects of loop perforation on

• Filter like algorithm such as Image Blurring

• Feature classification algo’s like : Local Binary Patterns

• Feature vector matching example Histogram Comparison

And compare the results with standard algorithms available on the CPU
and GPU

Method

• Implement the algorithms on a CPU and a GPU

• Optimize the performance on the GPU

• Find avenues for loop perforation and try various levels of perforation

• Obtain the various performance evaluation criteria

• Conclude Results

Image Blurring

• We use Box Blur Algorithm
• Spatial domain linear filter

• Each pixel equal to average of its neighbors

• low-pass ("blurring") filter

• Easily implementable on the GPU

• Ideal Example to study Perforation

Image Blurring – CPU

Image Blurring – GPU

Image Blurring – A comparison

LOOP PERFORATION

BLURING

CPU

No Perf - Clock Time (for 50 iterations) = 40.019

loop+=2 - Clock Time (for 50 iterations) = 10.259

loop+=5 - Clock Time (for 50 iterations) = 1.611

GPU -

No Perf - Clock Time (for 50 iterations) = 0.263085

loop+=2 - Clock Time (for 50 iterations) = 0.155025

loop+=5 - Clock Time (for 50 iterations) = 0.121848

Different Types of Loop Perforation

Without Perforation on GPU

With Perforation on GPU

Local Binary Patterns

• The Algorithm

Local Binary Patterns – CPU

Local Binary Patterns – GPU

Local Binary Patterns – A comparison

CPU (Change Loop in LBP.cpp file - line
319)

• No Perf - Example took 0.166892s

• loop+=2 - Example took 0.134939s

• loop+=3 - Example took 0.111867s

GPU -

• No Perf - Example took 0.063818s

• loop+=2 - Example took 0.104177s

• loop+=3 - Example took 0.0965s

Conclusions And Discussion

• Loop Perforation studied with Image blurring and LBP algorithms

• Used Various Methods for Loop Perforation
• Throwing out Warps Not a Good Idea
• Doing it on the CPU produces patterned results

• GPU Implementations Generally faster
• For Blurring we got 150x Speed up (without perforation)
• We got 200x Speed up (with Perforation +2)
• We got 66x Speed up (with Perforation +5)

• Even Faster with Perforation
• 1.7x Speed up (with Perforation +2)
• 2.1x Speed up (with Perforation +5)

Future Work

• Try and add Power Consumption Statistics for the current results

• Try Perforation on a Feature Vector matching Algorithm

• Using perforated LBPs and Perforated Feature vector matching For
face detection

Thank You

Resources Used

Bad Result CPU

