EECS 468
Project Review

Study of Loop Perforation on GPUs

Alex Broad
Akhil Guliani

Aims and Objectives

* We propose to find the best method to apply loop perforation on a
GPU like device with minimal loss in computational accuracy with
reduction in both time taken to compute the results and reduction of
power consumption.

What is loop perforation ?

* Loop perforation transforms loops to execute a subset of their
iterations.

* The goal is to reduce the amount of computational work
* amount of time
* resources such as power

Ways of doing loop Perforation

* Criticality Testing :
* Finding which methods produce unacceptable results
* Throwing out a warp == not good

 Perforation Space Exploration
* Finding all the various possible results

* Throwing out threads selectively
* Increment only one dimensions
* Increment both dimensions
» Skip certain loops based on divisibility by factor

Benefits of Approximate computing

* Approximate computing is a new research direction that improves
efficiency by carefully relaxing correctness constraints

* Quicker results
* Lower utilization of Resources

Our Case

We Study effects of loop perforation on

* Filter like algorithm such as Image Blurring

* Feature classification algo’s like : Local Binary Patterns

* Feature vector matching example Histogram Comparison

And compare the results with standard algorithms available on the CPU
and GPU

Method

* Implement the algorithms on a CPU and a GPU

e Optimize the performance on the GPU

* Find avenues for loop perforation and try various levels of perforation
* Obtain the various performance evaluation criteria

* Conclude Results

Image Blurring

* We use Box Blur Algorithm
e Spatial domain linear filter
* Each pixel equal to average of its neighbors
* low-pass ("blurring") filter

* Easily implementable on the GPU
* |deal Example to study Perforation

Image Blurring — CPU

bool perf = false;
int perf_rate = 5;

for (int x = one_filter _dim; x < src.rows-one filter dim; x+=1i)
{
for (int y = one_filter dim; y < src.cols-one filter dim; y+=3j)
{
if (perf & & ((y % perf rate) && (x % perf _rate)) == 0))
{
continue;
}
r sum = 0.0; g sum = 0.0; b sum = 0.0;
for (int f x = x-one_filter dim; f x <= x+one_filter dim; f Xx++)
{
for (int f y = y-one_filter dim; f y <= y+one filter dim; f y++)
{
src.at<cv::Vec3b>(f x,f y)[0];
src.at<cv::Vec3b>(f x,f y)[1];
src.at<cv::Vec3b>(f x,f y)[2];
+= r_C; g sum += g c; b _sum += b_c;

at<cv::Vec3b>(x,y)[0] r_sum/(filter dims*filter dims);
at<cv::Vec3b>(x,y)[1] g sum/(filter dims*filter _dims);
.at<cv::Vec3b>(x,y)[2] b sum/(filter dims*filter dims);

Image Blurring — GPU

__global
void blur(unsigned char* input image, unsigned char* output image, int width, int height) {

const unsigned int offset = blockIdx.x*blockDim.x + threadIdx.Xx;
int x = offset % width;

int y = (offset-x)/width;

int fsize = 5;

if(offset < width*height) {

float output red =

float output_green

float output blue

int hits = ©;

for(int ox = -fsize; ox < fsize+l; ++ox) {

for(int oy = -fsize; oy < fsize+l; ++oy)*{
if((x+ox) > -1 && (x+ox) < width && (y+oy) > -1 && (y+oy) < height) {

const int currentoffset = (offset+ox+oy*width)*3;
output_red += input_image[currentoffset];
output_green += input_image[currentoffset+1];
output_blue += input_image[currentoffset+2];
hits++;

}
}
output_image[offset*3] = output red/hits;
output_image[offset*3+1] output_green/hits;
output_image[offset*3+2] = output_blue/hits;

}

Image Blurring — A comparison

LOOP PERFORATION

BLURING

CPU

No Perf - Clock Time (for 50 iterations) = 40.019
loop+=2 - Clock Time (for 50 iterations) = 10.259
loop+=5 - Clock Time (for 50 iterations) = 1.611

GPU -

No Perf - Clock Time (for 50 iterations) = 0.263085
loop+=2 - Clock Time (for 50 iterations) = 0.155025
loop+=5 - Clock Time (for 50 iterations) = 0.121848

Different Types of Loop Perforation

gpu_blur150310_

@ | CUDA Launches - H Hierarchy [Flat

~ | Filter Viewing: 1/1

Grid Block Start Time Duration Registers Static Shared Dynamic Shared Cache Local Memory Device Context Stream Process Occupancy [0]: Occupancy [0]: Occupancy [0]: Occupancy [0]: Occupancy [0]:

Function Name v . . v ? ? ? Occupancy ? 9 V Memory per ? Memory per ? Configuration V per Thread v v v v v Allocated Warps v Allocated Registers ? Allocated Shared Memory ? Max Block Limit ? Max Block Limi
Dimensions Dimensions (us) (ps) per Thread Name ID ID Name a

Block (bytes) Block (bytes) Executed (bytes) Per Block Per Block Per Block Warps Registers

1 blur {1536, 1, 1} {512, 1, 1} 326,832.236 I 4,779.552 I 100.00 % I 21 0 0 PREFER_SHARED 0 GeForce GTX 870M 1 1 gpu_blur.exe 16 12288 0 4

Without Perforation on GPU

< |

blur<<<1536,512>>> [CUDA Launch] Instructions Per Clock (IPC) SM Activity 12} Instructions Per Warp (IPW) Warps Launched
Device Launches Wissued Ml Executed ctivity:08.60% 8000 -
Call Graph
P blur [CUDA Kemel]
4 Experiment Results
Occupancy

Instruction Statistics

Issue Efficiency

ipw:3466.67

Warps Launched

issued:2.85

With Perforation on GPU

Local Binary Patterns

* The Algorithm

Local Binary Patterns — CPU

Local Binary Patterns — GPU

Local Binary Patterns — A comparison

CPU (Change Loop in LBP.cpp file - line
319)

* No Perf - Example took 0.166892s
* loop+=2 - Example took 0.134939s
* loop+=3 - Example took 0.111867s

GPU -

* No Perf - Example took 0.063818s
* loop+=2 - Example took 0.104177s
* loop+=3 - Example took 0.0965s

Conclusions And Discussion

* Loop Perforation studied with Image blurring and LBP algorithms

* Used Various Methods for Loop Perforation
* Throwing out Warps Not a Good Idea
e Doing it on the CPU produces patterned results

* GPU Implementations Generally faster
* For Blurring we got 150x Speed up (without perforation)
* We got 200x Speed up (with Perforation +2)
* We got 66x Speed up (with Perforation +5)

* Even Faster with Perforation
e 1.7x Speed up (with Perforation +2)
e 2.1x Speed up (with Perforation +5)

Future Work

* Try and add Power Consumption Statistics for the current results
* Try Perforation on a Feature Vector matching Algorithm

* Using perforated LBPs and Perforated Feature vector matching For
face detection

Thank You

Resources Used

Bad Result CPU

